Answer:
Option B,C
Explanation:
$f(x)= \frac{1-x(1+\mid1-x\mid)}{\mid1-x\mid}\cos(\frac{1}{1-x})$
Now,
$\lim_{x \rightarrow 1^{-}}f(x)$
$= \lim_{x \rightarrow 1^{-}}\frac{1-x(1+1-x)}{\mid1-x\mid}\cos(\frac{1}{1-x})$
$= \lim_{x \rightarrow 1^{-}}(1-x)\cos(\frac{1}{1-x})=0 and \lim_{x \rightarrow 1^{+}}f(x)=\lim_{x \rightarrow 1^{+}}$
$\frac{1-x(1-1+x)}{x-1}\cos(\frac{1}{1-x})$
$=\lim_{x \rightarrow 1^{+}}-(x+1) cos (\frac{1}{x+1}) $ where x≠ 1 doesnot exist