<<12345>>
11.

Let O be the origin and OX, OY, OZ be three unit vectors in the directions of the sides QR,RP,PQ respectively of triangle PQR.

(ox × oy)= 


A) sin(P+Q)

B) sin(P+R)

C) Sin(Q+R)

D) sin2R



12.

Let p,q be integers and let α ,β be the roots of the equation $x^{2}-x-1=0$  where α ≠β, For n=0,1,2...... Let  $a_{n}=p\alpha^{n}+q\beta^{n}$  ( If a and b are rational numbers and  $a+b\sqrt{5}=0$, then a=0=b)

If a24=28   , then p+2q=


A) 14

B) 7

C) 21

D) 12



13.

Let p,q be integers and let α ,β be the roots of the equation $x^{2}-x-1=0$  where α ≠β, For n=0,1,2...... Let  $a_{n}=p\alpha^{n}+q\beta^{n}$  ( If a and b are rational numbers and  $a+b\sqrt{5}=0$, then a=0=b)

a12=


A) $a_{11}+2a_{10}$

B) $2a_{11}+a_{10}$

C) $a_{11}-a_{10}$

D) $a_{11}+a_{10}$



14.

If $g(x)=\int_{\sin x}^{\sin(2x)} \sin^{-1}(t)dt$ , then


A) $g'(-\frac{\pi}{2})=2\pi$

B) $g'(-\frac{\pi}{2})=-2\pi$

C) $g'(\frac{\pi}{2})=2\pi$

D) $g'(\frac{\pi}{2})=-2\pi$



15.

Let 

   $f(x)= \frac{1-x(1+\mid1-x\mid)}{\mid1-x\mid}\cos(\frac{1}{1-x})$   for x≠ 1, then


A) $\lim_{x \rightarrow 1^{+}}f(x)=0$

B) $\lim_{x \rightarrow 1^{+}}f(x)$ doesnot exist

C) $\lim_{x \rightarrow 1^{-}}f(x)=0$

D) $\lim_{x \rightarrow 1^{-}}f(x)$ doesnot exist



<<12345>>